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Abstract— In this paper, we present an early termination
condition for the primal-dual interior-point method for applica-
tion in nonlinear model predictive control (MPC) problems. The
condition verifies the prescribed suboptimality level of a feasible
iteration of the algorithm and enables one to employ the feasible
suboptimal solution without jeopardising the stability of the
system. The distinguishing property of the proposed condition
is its primal-dual formulation, which allows the proposed early
termination of the algorithm to be independent from any values
computed on the previous time instances. Numeral experiments
on a nonlinear planar multirotor system and a comparison
of the proposed early termination condition with the existing
methods are provided.

I. INTRODUCTION
Model predictive control (MPC) is a feedback control

method based on numerical optimisation. A well known
advantage of MPC is that it can utilise dynamic system mod-
els in optimising the prescribed performance metric whilst
satisfying inherent constraints of the system. However, for
some situations the complexity of the optimisation problem
itself precludes the solution in real time.

In the case of convex formulation of MPC problem one can
compute the optimal control law explicitly (Explicit MPC
[1], [2]) or approximate it to sufficient degree (Approximate
Explicit MPC [3], [4]) to avoid solving the optimisation
problem in real-time. However, these methods are known
to have scalability issues associated with the nature of para-
metric problems. Thus, these approaches are usually limited
to relatively low dimensional systems. Nevertheless, while
sparse grids can help to mitigate the curse of dimensionality
in approximating the control law for the dynamical systems
of moderate dimensions [5], [6], high degree of freedom
systems are still out of the scope of the explicit methods.

Therefore, extensive attention has been paid to suboptimal
solutions of the optimisation problems to reduce the compu-
tational costs associated with MPC [7]–[9]. The basic idea
of proposed approaches is to verify sufficient reduction of
a Lyapunov function candidate for a given feasible control
sequence. It allows early termination of the optimisation
algorithm thereby reducing the complexity. Motivated by
similar reasons, several techniques of input parametrisation,
aimed at reducing the number of decision variables, have
also been considered [10]–[12].

To further reduce the computational burden associated
with MPC efficient algorithms for solving optimisation
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problems should be used [13]. For example, primal-dual
interior-point methods are a special class of algorithms for
numerical optimisation that run in polynomial time and are
very efficient in practice. In [14] it was shown that the
structure of the problem could be exploited to reduce the
complexity of primal-dual algorithm iterations. There exist
similar opportunities to exploit the suboptimality criteria
required for a control sequence to preserve stability.

The remainder of this paper is organized as follows.
Section 2 gives a gives a brief introduction to stability results
in MPC framework and introduces the idea of primal-dual
interior-point method to solve the optimisation problem. In
Section 3 the main contribution of this paper is discussed,
where a primal-dual formulation of the suboptimality-based
early termination condition is proposed. In Section 4 we
provide numerical comparisons of existing and proposed
approaches for a nonlinear planar multirotor system and
illustrate advantages of the proposed approach. Conclusions
are summarized in Section 5.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Model predictive control

Consider a discrete-time system of the following form:

x+ = f(x, u), (1)

where f : Rn × Rm → Rn is a sufficiently smooth map,
which for a given current state x ∈ Rn and a control input
u ∈ Rm assigns the state x+ ∈ X at the next sampling
instant. Moreover, the origin of the system is an equilibrium,
i.e., f(0, 0) = 0.

Assume that the states and inputs of the system are subject
to the following constraints:

x ∈ X , u ∈ U , (2)

where X ⊆ Rn and U ⊆ Rm are closed convex polyhedrons
whose interior contains the origin.

Define the stage cost q(x, u) for being in state x and taking
action u, where

q(x, u) is sufficiently smooth,
q(x, u) is convex in x and u,
q(x, u) > 0 for (x, u) 6= (0, 0),

q(0, 0) = 0.

(3)

We introduce an auxiliary function p(x), which is strictly
convex in x, equals zero at the origin and strictly positive
everywhere else, and a compact set Xf ⊆ X , which contains



the origin. The function and the set must satisfy the following
property:

∀x ∈ Xf ∃u ∈ U :

f(x, u) ∈ Xf and p
(
f(x, u)

)
+ q(x, u) ≤ p(x).

(4)

Consider the task of driving the system to the origin from
the current state x, while minimising a sum of stage costs
over the prediction horizon N , where N is a positive integer,
and satisfying the constraints at all times. We formulate a
finite time constrained optimal control problem to be solved
at each time step as follows:

J?(x) = min
ξ,u

J(ξ,u) =

N−1∑
i=0

q(ξi, ui) + p(ξN )

s.t. h(x, ξ,u) = 0

g(ξ,u) ≤ 0

(5)

where u = [u0, . . . , uN−1] and ξ = [ξ0, . . . , ξN ] are vectors
of decision variables, h(x, ξ,u) = 0 incorporates constraints
on the initial condition and the dynamics, i.e. ξ0 = x and
ξi+1 = f(ξi, ui) for i = 0, . . . , N − 1, and g(ξ,u) ≤ 0
accounts for ξi ∈ X , ui ∈ U and ξN ∈ Xf . In further
sections we refer to this problem as the MPC problem.

The equality constraints in (5) can be substituted in the ob-
jective function, so it becomes a function of the current state
and control inputs: J(x,u). We denote a global optimiser of
(5) as u? = [u?0, . . . , u

?
N−1] and use notation u?(x) to point

out that it is a function of x. From here the key idea of the
MPC framework is easy to see: at each sampling instance
the optimisation problem, described by (5), is solved for a
current state x to form the feedback law u?0(x).

Asymptotic stability of the origin of the system under
MPC control can be guaranteed by the existence of a strictly
decreasing Lyapunov function. Under the aforementioned
assumptions, the function J?(x) = J(x,u?(x)) is a suitable
Lyapunov function candidate.

Remark 1. In general it is hard to find a globally optimal
solution for the non-convex optimisation problem. In practice
local optimality of the solution is enough for MPC control
[15], however additional care should be taken to avoid
switching between different locally optimal trajectories.

B. Stability of suboptimal MPC

As it was outlined previously, the idea of MPC is to use the
first element of the optimiser of a finite time constrained opti-
mal control problem as a control input. However, in the case
of limited computational resources or fast sampling, exact
computation of the local optimiser at every sampling instant
might be prohibitive due to the time constraints. As a typical
optimisation algorithm approaches a solution iteratively, it
makes an intermediate iteration a good candidate candidate
for control purposes.

In what follows we present a slightly modified version of
[16, Theorem 14.1], which introduces sufficient conditions
for the stability under a feasible sub-optimal control law. It
was modified to include the nonlinear dynamics of the system
and account for the whole stage cost.

Theorem 1. Consider a nonlinear system (1) subject to
constraints (2), a corresponding MPC problem (5), such that
(3) and (4) hold, and a level of suboptimality γ ∈ (0, 1). If
the control law ũ(x) = [ũ0(x), . . . , ũN−1(x)], formed as a
feasible solution to (5) for a given x, satisfies the following
for all x ∈ X0 ⊆ X :

J
(
x, ũ(x)

)
≤ J?(x) + γq

(
x, ũ0(x)

)
,

where J?(x) is the optimal cost, then the origin of the system
is asymptotically stable under the γ-suboptimal control law
ũ0(x) with a domain of attraction X0.

Proof. The proof follows the same steps as the proof of
Theorem 14.1 in [16] and terminates at the equation (14.7).

Remark 2. The result of Theorem 1 enables one to employ
a feasible suboptimal solution of (5) without jeopardising
the stability of the system. However, to be able to use the
condition one needs to know the optimal cost at the current
state.

C. Primal-dual interior-point method applied to MPC

Interior-point methods are a class of algorithms that can
be used to find a local optimiser of a nonlinear optimisation
problem of a sufficient degree of regularity. Here we consider
a primal-dual interior-point method for solving finite time
constrained optimal control problems arising in the MPC
framework.

For the optimisation problem, described by (5), we define
the Lagrangian function L(x, ξ,u, λ, s) as follows:

L(x, ξ,u, λ, s) = J(ξ,u) + λTh(x, ξ,u) + sT g(ξ,u),

where λ and s are dual variables, or KKT multipliers, for
the equality and inequality constraint respectively.

Here we assume that the problem satisfies the linear
independence constraint qualification (LICQ) at the optimal
point (this can be replaced by a weaker condition), thus
KKT conditions are the first-order necessary conditions for
a solution of (5) to be locally optimal:

∇(ξ,u)L(x, ξ,u, λ, s) = 0,

h(x, ξ,u) = 0,

g(ξ,u) + y = 0,

(s, y) ≥ 0, sjyj = 0, j = 1, . . . , l;

(6)

where we introduced a vector of slack variables y ∈ Rl (l is
a number of inequality constraints).

The idea of the primal-dual interior-point method is to
replace the complementarity slackness condition sjyj = 0
with a perturbed one sjyj = µ for j = 1, . . . , l, where µ > 0
is a barrier parameter. Let k be the iteration counter. Now
we iteratively approach a solution of (6) with a sequence
(ξ(k),u(k), λ(k), s(k), y(k)) by taking damped steps in a
Newton direction, obtained from the linearisation of (6) at
the current iteration. At every step additional care should be
taken to keep (s(k), y(k)) at a sufficient distance from the



Data: System of KKT conditions and a starting point
Result: Solution with a specified level of accuracy
Perform the initialisation;
while termination condition Π is not satisfied do

Adjust the barrier parameter;
Compute the search direction;
Perform the line search;
if the trial point is accepted then

Take the step;
else

Perform the feasibility restoration procedure;
end

end
Algorithm 1: A high-level representation of the primal-dual
interior-point method

non-negativity boundary, while forcing µ(k) k→∞−−−−→ 0 until
some termination condition Π is satisfied.

In general, the feasibility of the primal-dual iterations with
respect to the vector-valued equality constraints of (6) is not
automatically guaranteed. If the iterations are infeasible the
search direction has to be modified, so that some measure of
infeasibility is minimised. In the case of quadratic or linear
programs, once the step results in primal and dual feasible
variables, all subsequent iterates remain feasible.

As the solution of (6) is obtained as a limit point of the
sequence of the primal-dual iterations, a finite termination
procedure is required. This requires a termination condition
Π to be defined. Usually, the rule checks whether the
accuracy level achieved on the current iteration is within the
user provided error tolerance level or not. However, one can
use Theorem 1 as a starting point for proposing a termination
condition that results in a stabilising control input. However,
it must be noted that Theorem 1 cannot be readily used due to
the fact that the exact value of the optimal cost is unknown.

This idea has been explored in [7] and the proposed
solution was to construct a bounding sequence, based the
values of the objective functions from the previous time
instants. The early termination condition relies on enforcing
a sufficient decrease in the cost function at the current time
instant compared to the value from the previous time instant:

J(x,u(k)) ≤ J(x̄, ū)− αq(x̄, ū0), (7)

where α ∈ (0, 1), x is the current state, x̄ and ū are the
state and control respectively from the previous time instant.
Contrary, the termination condition proposed in this paper is
independent of values computed in the previous time instants.

D. Problem formulation

As stated above, the aim of this paper is to propose a
termination condition Π for the primal-dual interior-point
method for MPC, that results in a stable closed-loop system.
The problem of interest is given below.

Problem 1. Given the MPC problem and Algorithm 1,
propose a termination condition Π such that the feedback

law obtained from the algorithm results in a stable closed-
loop system. Furthermore, it is required that the termination
condition to be independent of the optimal solution or
solutions obtained at the previous time instances.

III. MAIN RESULT

In this section we state the main contribution of this paper
– the solution to the Problem 1, i.e. a termination condition
Π for the primal-dual interior-point method for MPC, that
results in a stable closed-loop system.

Theorem 2. Consider a nonlinear system (1) subject to con-
straints (2), a corresponding MPC problem (5), such that (3)
and (4) hold, and a level of suboptimality γ ∈ (0, 1). Denote
by k the iteration counter and by (ξ(k),u(k), λ(k), s(k), y(k))
the k-th iteration of the primal-dual interior-point algorithm,
and denote by u(k)0 the first element of u(k).

Let the algorithm terminate at a feasible k-th iteration
where the condition

s(k)
T
y(k) ≤ γq(x, u(k)0 ) (8)

is satisfied. If u(k)0 is used to form the MPC control law then
the closed-loop system is stable.

Proof. Consider the Lagrange function associated with (5):

L(x, ξ,u, λ, s) = J(ξ,u) + λTh(x, ξ,u) + sT g(ξ,u),

where λ and s are dual variables for the equality and
inequality constraint respectively. For the nonlinear optimi-
sation problem the weak duality holds and can be written as
follows:

max
s≥0,λ

min
ξ,u

L(x, ξ,u, λ, s) ≤ min
ξ,u

max
s≥0,λ

L(x, ξ,u, λ, s). (9)

Now let’s consider the k-th iteration of the primal-dual
interior point method which is feasible, i.e. the iteration
satisfies perturbed KKT conditions:

∇(ξ,u)L(x, ξ(k),u(k), λ(k), s(k)) = 0,

h(x, ξ(k),u(k)) = 0,

g(ξ(k),u(k)) + y(k) = 0,

(s(k), y(k)) > 0.

(10)

For the given iteration the stationary condition with respect
to ξ and u is achieved, as it follows from the first equation
of (10). The conditions for a local maximum with respect to
λ and s are, however, not fulfilled. Thus,

L(x, ξ(k),u(k), λ(k), s(k)) ≤ max
s≥0,λ

min
ξ,u

L(x, ξ,u, λ, s).

(11)
By considering (9) and (11) we can conclude that:

L(x, ξ(k),u(k), λ(k), s(k)) ≤ min
ξ,u

max
s≥0,λ

L(x, ξ,u, λ, s),

which along with the fact that the iteration is feasible, yields:

J(x,u(k))− s(k)
T
y(k) ≤ J?(x).

Hence, if
s(k)

T
y(k) ≤ γq(x, u(k)0 ),



then

J
(
x,u(k)

)
≤ J?(x) + γq(x, u

(k)
0 ).

Thus, the requirements of Theorem 1 are satisfied and we
conclude the stability of the closed loop system.

Remark 3. The proposed early termination condition is very
cheap to evaluate and requires neither the knowledge of
the value of the objective function from the previous time
instance, nor the knowledge of the optimal cost for the
current state.

Remark 4. In comparison to the early termination condition,
described by (7), our criterion, as it will be demonstrated
in the numerical experiments section, results in a desirable
solution in fewer steps of the primal-dual interior-point
method. It is conjectured that this is due to the fact that the
proposed termination condition does not rely on the sufficient
decrease of the cost function compared to the previous time
instants.

IV. NUMERICAL EXPERIMENTS

In this section we compare the average number and vari-
ance of iterations taken by the primal-dual algorithm (IPOPT
[17]) before one of the following termination conditions is
satisfied: exact solution withing user specified error tolerance
(10−8), existing condition (7) on a sufficient decrease of
the cost function for α = 0, and the proposed condition
(8) for γ = 1. The early termination conditions apply only
to feasible iterations (primal and dual infeasibility less than
10−3).

Here we consider the dynamics obtained by discretising
the quadrotor continuous-time dynamics by Euler method
with a time step h of 0.2 seconds, while restricting its spatial
motion to y − z plane (2D quadrotor). The system has the
following nonlinear dynamics affected by bounded additive
disturbance d (note that no disturbances d = 0 were assumed
in MPC problem formulation, thus d = 0 will be used in the
control synthesis):

x+ = x+ fc(x, u)h+ d,

where fc(x, u) is given by

fc(x, u) =


x4
x5
x6
0
−g
0

+


0 0
0 0
0 0

−1/m sin(x3) 0
1/m cos(x3) 0

0 1/M


[
u1
u2

]
.

The state vector x consist of y-z-θ coordinates and ve-
locities along the corresponding axes. The mass m, inertia
M and standard gravity g are assumed to be 0.5, 1 and 9.8
respectively.

We choose a quadratic stage cost q(x, u) = xTQx +
(u − ueq)

TR(u − ueq), where Q = 1
2I6 and R = I2 (I6

and I2 are the unity matrices of appropriate dimension),
ueq is a steady state control input at the equilibrium. The
control inputs are subject to constraints u0 ∈ [0, 10] and
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Fig. 1: The number of iterations before termination versus
time-steps without warm-starting. The lines represent the
mean and the bars represent the standard deviation.

u1 ∈ [−2, 2]. Auxiliary function p(x) is the LQR cost-to-
go function, computed for the linearised dynamics around
x = 0 and u = ueq . Set Xf is a box of unit size around
the origin, i.e. Xf = {x | ‖x‖∞ ≤ 0.5}. This choice of
Xf was made to be a subset of the control invariant set
computed for the linearised dynamics under the LQR control
law, while the control invariant and stabilising properties for
the nonlinear dynamics were verified numerically (details on
more systematic approach [18]).

In the first set of simulations we randomly initialise
the system inside the box {x | ‖x‖∞ ≤ 1}, while the
disturbances are considered to act only in the direction of
steepest ascent of the optimal cost function:

d = 5 · 10−3
∇J?(x)

‖∇J?(x)‖
.

These disturbances should prevent early termination of the
existing method, and so (in some sense) represent a more
challenging scenario for the algorithm.

Based on Fig. 1 we conclude that if warm-starting is
not used, the algorithm terminates almost equally soon for
both of the early termination conditions with a marginal
advantage of the proposed approach. We next consider the
same disturbance scenario, but warm start the algorithm
to represent more likely implementations. Warm starting is
performed with both primal and dual variables from the
previous iteration shifted by a time step, where the missing
primal values are generated by the system dynamics under
LQR control and missing dual variables are the sensitivity
of the LQR cost-to-go function (for equality constraints) and
zeros (for the inequality constraints).

As it can be seen from Fig. 2 the proposed approach
requires fewer iterations in average to find a control input
of a prescribed quality and clearly has smaller variance in
comparison with the existing early termination condition.
The algorithm makes more iterations to force a sufficient
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Fig. 2: The number of iterations before termination versus
time-steps with warm-starting. The lines represent the mean
and the bars represent the standard deviation.

reduction in the cost function, than it necessary to just verify
the level of suboptimality of the current iterate.

In actuality, these disturbance scenarios will be unrealisti-
cally pessimistic in that they always act against the existing
early termination condition. To provide a more realistic dis-
turbance scenario we consider uniform random disturbance
trajectories for the warm started algorithms, specifically,

‖d‖∞ ≤ 0.2.

Here we randomly initialise the system inside the box of
size 0.4 centred at x = [2; 2;π/4; 0; 0; 0]T and investigate
the number of primal-dual iterations made before satisfying
the early termination conditions when at the half of cases the
disturbances are driving the system in the descent direction
of the cost function.

As it can be concluded from Fig. 3, the proposed approach
requires ≈ 18% less computational resources in average to
find a control input of a prescribed quality. Here the peak
computational requirements are decreased by ≈ 14% when
the proposed condition is used.

Next we keep random disturbances as before and consider
a single scenario, where the system was initialised in some
random state. We compare the extra cost (defined as a
difference between sub-optimal cost and optimal cost at the
current state) along the closed-loop trajectories, obtained by
using one of two considered early termination criteria. As
present on Fig. 4, both early termination criteria provide
solutions of similar quality.

V. CONCLUSION

Primal-dual interior-point method is an important tool in
finding a locally optimal solution of an nonlinear optimisa-
tion problem. As the solution is obtained as a limit point of
iterations, the number of iterations made by the algorithm
highly depends on the finite termination procedure utilised.
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Fig. 3: The number of iterations before termination versus
time-steps with warm-starting for bounded uniformly dis-
tributed disturbances. The lines represent the mean and the
bars represent the standard deviation.
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Fig. 4: Extra cost (compared to the optimal cost) along the
system trajectory for two early termination criteria.

When a model predictive control is implemented on a low-
powered embedded system, it might be desirable to terminate
the algorithm earlier without compromising the stability of
the closed-loop system.

We proposed an early termination condition, which verifies
the prescribed suboptimality level of a feasible solution with-
out the knowledge of the optimal solution itself. Moreover,
while the existing condition forces a sufficient reduction of
the cost function compared to the previous time instant, the
proposed early termination condition is independent from
solutions obtained at the previous time instances. Based on
the numerical experiments we conclude that the condition
has a clear advantage if the algorithm is warm-started from
the solution computed at the previous time instant. In com-
parison with the existing method, utilisation of the proposed
condition reduces the average number of iteration made by
the algorithm, as well as its variability. There is, however,
only a marginal advantage of the proposed condition if



warm-starting is not performed or external disturbances are
insignificant. While this analysis applies for the specific case
studies, the proposed approach may be important for certain
embedded controller applications.
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